Experiences with omitting scour protection and allowing scour in Eneco Luchterduinen

from scale modelling and field measurements towards a new design method for scour prediction

with contributions of:

Eneco Leon van der Meijden, Wybren de Vries and others
Van Oord Theo de Lange, Jan Glas, René van Kessel, Irene Tönis, Rudi van der Sar, Wilbert van Boldrik and others
Deltares Tim Raaijmakers, Hendrik Jan Riezebos, Greta van Velzen, Niels Jacobsen, Irma Centen and others

16 June 2016, Winddagen 2016, WTC Rotterdam
What is scour and why bother?

Scour is erosion of seabed sediment around a structure caused by a local increase in sediment transport.

Scour:
- Lowers the pile fixation level, affecting the eigen frequency, reducing fatigue life (monopiles).
- Causes undermining of the footings, reducing the bearing area (GBS, suction cans, spud cans).

[Sumer and Fredsøe, 2001]
Hamlet already asked the important question

To protect, or not to protect: that is the question!
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous scour,
Or to take armour against a sea of troubles

loosely based on Hamlet (Shakespeare, 1602)
Two ways to take scour into account in design

Allow scour

- Predict scour depth
- Available guidelines:
 - GL: \(S = 2.5 \times D_{\text{pile}} \)
 - DNV: \(S = 1.3 \times D_{\text{pile}} \)
- Take scour into account in pile design

Protect against scour

- Applying a scour protection at the seabed
- No guidance in guideline
- Optimization by model tests: more dynamic designs are often possible
Two ways to take scour into account in design

Steel vs. Rocks
Scour development in time $S(t)$ follows an exponential relation until equilibrium:

$$\frac{S(t)}{S_{eq}} = 1 - \exp\left(-\frac{t}{T_{char}}\right)$$

in which:

S_{eq} = equilibrium scour depth

T_{char} = characteristic timescale

Both parameters are dependent on:

- water depth
- seabed conditions
- pile diameter (or more general structure characteristics)
- hydrodynamic climate (distinction between wave- and current-dominated conditions)

For all possible combinations S_{eq} and T_{char} have to be determined by means of:

- Scale model tests (most reliable)
- Numerical modelling (in the future)
Scale model tests at Deltares
Scour Prediction Model

- Calculation model to predict dynamic scour development
- Location- and structure-dependent scour prediction
- Distinguishes between wave- and current-dominated scour
- Allows for scouring and backfilling
- Calculates years of scour development in < 1 minute
- Completely based on scale model tests: requires validation against field data!

Flow Chart of Scour Prediction Model

Inputs
- Dynamic
- Time series: Met-ocean conditions
- Static inputs
- Structure dimensions
- Sediment/soil parameters
- Initial scour depth \(S_0 \)

Calculation
- Scour depth \(S_n \)
- Sediment mobilization
- \(\text{MOB} > 0.5 \)
- \(\text{MOB} \leq 0.5 \)
- Rel. current velocity
- \(U_{\text{rel}} > 0.5 \)
- \(U_{\text{rel}} \leq 0.5 \)
- Equilibrium scour depth
- Wave-dominated → Raaijmakers approach
- Current-dominated → Sheppard approach
- \(S_n < S_{\text{eq},n+1} \) → scouring
- \(S_n > S_{\text{eq},n+1} \) → backfilling
- Characteristic time
- Scour characteristic time
- Backfill characteristic time
- Scour after time step \(dt \)
- \(S_{n+1} = S_{\text{eq},n+1} + (S_n - S_{\text{eq},n+1}) \exp\left(-\frac{dt}{T}\right) \)
Field Measurement Campaign in Luchterduinen

- Field measurements at 2 unprotected monopiles (WTG-30, WTG-42) in Eneco Luchterduinen
- To validate the equilibrium scour depths and characteristic timescales of the Scour Prediction Model
- Simultaneous hydrodynamic data were collected as input for the Scour Prediction Model
- One year of measurements allows for validation of the SPM for a wide range of conditions (current- and wave-dominated)
Setup of scour measurement sensors

- 3 Nortek scour monitors per pile
- 4-beam echo sounder (12 signals / pile)
- under beam angles of 10, 20, 30 and 45°
- supplemented with multibeam surveys
Scour development until dynamic equilibrium takes about 1-1.5yr (in Luchterduinen!)

- Backfilling of the 2-3m deep cable trench took about 9-10 months
- The scour pit is now about 5-5.5m deep = 1.0-1.1*D_{pile}
- The dynamic scour depth will probably stabilize next year around 6m = 1.2*D_{pile} (according to design)
- The diameter of the scour pit is about 5*D_{pile}
- The side slopes are about 1:2
- The scour holes in Luchterduinen are very similar to the scour holes in the laboratory tests on scale ~1:40!
Significant wave height \(H_s \) [m]

Peak period \(T_p \) [s]

Water depth \(h_w \) [m]

Current velocity \(U_c \) [m/s]
Faster scour development during spring tide with low waves
Current vel. $U_c [m/s]$

Significant Wave height $H_s [m]$

Scour depth $S [m]$

Backfilling of scour hole during storms

2014 2015
Model assumptions:
- Non-cohesive soil (= sandy seabed)
- Based on >100 simulations with different hydrodynamic time series (different starting times)
- Valid for unprotected monopiles; small differences in map for different pile diameters
Scour: to protect or not to protect?

Cost of scour protection vs. additional steel

Blue colours mean there is a real potential for leaving out the scour protection

*Case I

*Case II

*Case III
Conclusions

- Hamlet was right! You should question yourself on the topic of scour.
- The Luchterduinen scour measurement campaign yielded very useful data to validate the Scour Prediction Model.
- All scour processes were well captured, both in space and in time.
- With the results in FLOW-SCOUR significant savings can be achieved, both by omitting and by applying a scour protection.
- The optimal choice depends on:
 - Location (water depth, hydrodynamic climate, current vs. waves)
 - Turbine type and size
 - Soil conditions
 - Substructure design
 - Developer and contractor (equipment, CAPEX vs. OPEX)
- Potential reduction of LCoE is ~1% and is very project-specific.
Follow-up project

Joint-Industry-Project

Handbook Scour Protection Methods

submitted for TKI-WOZ R&D call open for additional participants
¡Thank you for your attention!
¿Questions?

More info? Tim.Raaijmakers@deltaires.nl

Dolwin Alpha and Dolwin Gamma tested in Deltares’ Atlantic Basin